
AS759 - Homework #5
Due: No later than 4:00pm on Thursday, December 19

Note: You are welcome to use tables of integrals and/or symbolic integrators when solving
all problems. Just be sure to note down the generic form of the integral if you solve a
problem in this way.

1. (20 points) The gravitational lens system known as PG1115 is observed to have an
Einstein ring of radius 0.6 arcsec. The source is located at a distance of 1750 Mpc from the
earth, the lens is located at a distance of 940 Mpc from the earth, and the distance between
the lens and the source is 1290 Mpc. Suppose that the 3–dimensional mass distribution of
the lens is given by:

ρ(r) =
3a2

4π

M

(r2 + a2)
5/2

where M is the total mass of the lens and a is a constant.

a) Compute the surface mass density of the lens, Σ(R).

b) Recall that the lens equation is

β = θ −
Dds

Ds
α̂

and in the case of a spherically–symmetric lens

α̂ =
4GM(R)

c2R
.

Compute the mass of the lens interior to the Einstein ring, and express your final answer
in units of solar masses. What type of astronomical object is the lens?

c) In order for a lens to produce an Einstein ring, its central surface mass density must be
at least

Σc ≡
c2

4πG

Ds

DdDds

If the ratio of the central surface mass density of the lens to the above critical surface mass
density is Σ(0)/Σc = f , what must the value of f be such that the total mass of the lens
is finite?
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2. (20 points) The convergence of a gravitational lens is given by:

κ(~θ) ≡
Σ(~θ)

Σc
, Σc ≡

c2

4πG

Ds

DdDds
.

In the case of an axisymmetric lens, κ(~θ) = κ(θ) and it can be shown that the magnitude
of the shear is given by:

γ(θ) =
Σ(θ)− Σ(θ)

Σc
,

where Σ(θ) is the mean surface mass density of the lens interior to θ.

a) Consider a singular isothermal sphere lens, for which the 3-dimensional mass density
is:

ρ(r) =
σ2
v

2πGr2

(as usual, σv is the line of sight velocity dispersion). Compute κ(θ) and γ(θ) for the
singular isothermal sphere, and the ratio κ(θ)/γ(θ).

b) To first order, an intrinsically circular source galaxy will be transformed into an ellipse
by gravitational lensing. In particular, a circular source with unit radius will be
transformed into an ellipse via a stretching of the image in two directions: (1) along the
radius vector that connects the centroids of the lens and the source and (2) tangential
to the radius vector that connects the centroids of the lens and the source. To first
order, the radial stretch is (1− κ+ γ)−1 and the tangential stretch is (1− κ− γ)−1.
To first order, then, by what factor will the elliptical image be magnified compared
to the source? Returning the isothermal sphere lens, how will the magnification and
the induced image ellipticity (ǫ = 1− b/a) vary with distance from the lens center, θ?

3. (25 points) Consider a “double quasar” that has been lensed by a foreground elliptical
galaxy, and two images are observable. The I+ image is located at θ+ = +1.75” and the
I− image is located at θ− = −0.95”. (The plus sign indicates that the I+ image and the
source are on the same side of the lens, while the minus sign indicates that the I− image
is on the opposite side.) Further suppose that Dds = 0.5h−1 Gpc, Ds = 1.0h−1 Gpc, the
distance between the observer and the lens is Dd = 0.5h−1 Gpc, and the redshift of the
lens is zd = 0.5. Throughout the problem approximate the lens as a point mass.

Rays of light passing by a gravitational lens at a location θ on the sky will take longer to
reach the observer than if they were traveling through vacuum. If the lens is both isolated
in space and has a spherically-symmetric mass distribution, then for a given light ray,
the total additional travel time is given by:

τ =
(1 + zd)

c

DdDs

Dds

[

1

2
(θ − β)2 − ψ2D(θ)

]
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where zd is the redshift of the lens and ψ2D(θ) is given by:

ψ2D(θ) =
2

c2
Dds

DsDd

∫ source

observer

Φ3D(θ) dl.

That is, ψ2D(θ) is simply the 3-dimensional gravitational potential of the lens integrated
along the line of sight, multipled by some convenient numbers that make ψ2D a dimen-
sionless quantity. The first term in the expression for τ is the “geometrical” time delay
(i.e., the time delay cause solely by the additional path length). The second term is the
“gravitational” time delay (i.e., the time delay caused by time dilation in the gravitational
field of the lens).

a) Write down expressions for the roots of the quadratic lens equation above (i.e., θ+ and
θ−) and determine the location of the source, β. Express your final answer in units of
arcsec.

b) Compute the value of the Einstein radius, θE , in arcsec. How does the value of θE
compare to the separation between the two images?

c) Compute the mass of the lensing galaxy, and express your final answer in units of
h−1 M⊙. Is this a reasonable mass for an elliptical galaxy?

d) Compute the total additional time compared to vacuum, τ+ and τ−, that each of the
two light rays must travel in order to reach the observer. Express your final answers in
units of h−1 years. Compare the values you obtain to the “Hubble age”. Note that for a
point mass

ψ2D(θ) = θ2E ln(|θ|).

e) What percentage of τ+ and τ− in d) is caused by the “geometrical” part of the time
delay (i.e., the additional path length caused by the deflection of light)? Note: this is
supposed to be a simple estimation.

f) Suppose the quasar were to undergo a large flare. Which of the two images, I+ or I−,
would show the flare first?

g) Suppose you obtain light curves for the two images, and discover that the time delay be-
tween one image showing the flare and the other image showing the flare is 125 days. What
would you obtain for the value of H0? Express your final answer in units of km/s/Mpc.
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4. (35 points) In this problem you will explore the shapes of the images that result from
lensing by a point mass pictorially. Consider a point mass less with mass 1.0 × 1015M⊙.
Let the lens have a redshift zd = 0.5 and consider a source galaxy at a redshift zs = 1.0.
Take Ωm0 = 0.25, ΩΛ = 0.75, and H0 = 70 km/s/Mpc, in which case the angular diameter
distances are given by Dd = 1282.6 Mpc, Ds = 1705.2 Mpc, and Dds = 743.2 Mpc and the
Einstein radius is 52.5 arcsec. Let the source galaxy have an intrinsically circular shape,
and an intrinsic radius of 5 arcseconds. We know that every location in the source galaxy
will map to TWO locations in the “image plane”; i.e., the two locations θ±.

Using a Cartesian coordinate system to represent the observed sky (i.e., ignoring any
curvature to the sky), place the lens at the origin of the coordinate system and place the
source along the x-axis at the following locations: x/θE = 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0.
What you will do below is construct the resulting images for these source locations using
a simple prescription.

Take the source galaxy to be a uniform disk, in which case you can use a random number
generator to model the source galaxy as a random distribution of points with radius 5 arc-
seconds, centered on the coordinates above. For each point in the source galaxy, compute
where the corresponding two points in the lensed images will appear on the sky. In each
case, use enough random points in the source galaxy to represent the resulting images with
reasonable resolution. (As the magnification of the images increases you will likely want
to use more points.)

For each source location along the x-axis, make a SEPARATE plot of the locations of the
lensed images. In each plot, indicate the location of the lens on the sky by the letter L and
the location of the source by the letter S. Also, on each plot draw a dotted or dashed line
that represents the location of the Einstein ring. Simply place dots on the plot to represent
the locations of the points within the source that map onto the image locations. Be sure
to use SQUARE axis ratios when you make your plots. In addition to your plots, be sure
to hand in SKETCHES of the geometry and a clear statement of the trigonometry that
you used to map points in the sources into points in the images. That is, for a point in the
source with coordinates (xs, ys), show precisely how it maps to the coordinates (x+, y+)
and (x−, y−). Do this separately for values of ys > 0 and ys < 0.

Comment upon how the location of the source relative to the lens affects the sizes, shapes
and locations of the resulting images.
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